X-Ray Crystal Structure of Hexakis(imidazole)cadmium(11) Carbonate Pentahydrate, $[Cd(C_3H_4N_2)_6]CO_3,5H_2O$, a Supposed Hydroxy-nitrate

By Britt-Marie Antti, Bruno K. S. Lundberg,* and Nils Ingri

(Department of Inorganic Chemistry, University of Umeå, S-901 87 Umeå, Sweden)

Summary The crystal structure of $[Cd(C_3H_4N_2)_6]CO_3,5H_2O$ has been determined and the complex has been shown to be identical with that previously reported as $[Cd(C_3H_4N_2)_6-(OH)(NO_3),4H_2O]$.

WHEN aqueous solutions of cadmium(II) chloride and imidazole in a molar ratio of 1:10 are mixed and allowed to

 \dagger Verified by N and CO₃²⁻ analyses.

evaporate, two types of crystal are obtained, one type with and one type without chloride. The crystals that do not contain chloride are isomorphous with $[Co(C_3H_4N_3)_a]$ - $CO_3,5H_3O,^1$ which indicated a molecular formula of $[Cd-(C_3H_4N_2)_a]CO_3,5H_2O,^{\dagger}$

Recently, a structure supposed to be $[Cd(C_3H_4N_3)_6]$ -(OH)(NO₃),4H₂O has been described by Mighell and

Santoro.² Its cell parameters show a remarkable resemblance to those of $[Cd(C_8H_4N_9)_8]CO_{a,5}H_8O$.

Crystal Data: a = 9.0426(5), c = 21.720(5)Å, U = 1538.07Å³, Z = 2, $D_c = 1.45$ g cm⁻³, $D_m = 1.46$ g cm⁻³, space group $P6_8/m$.

The atomic parameters are almost the same. The fact that we obtained crystals free from chloride in a medium containing chloride, and the resemblance between the crystal data for the two complexes led us to believe that the reported structure of $Cd(C_3H_4N_3)_6(OH)(NO_3),4H_3O$ is wrong. Mighell and Santoro reported that the N-O bond lengths (1·286 Å) were longer than expected (1·24 Å). They claimed that this increase arose from hydrogen bonding to water molecules. A distance of 1·286 Å is in fact normal for C-O bond lengths. We have found a C-O bond length of 1·285 Å in the carbonate ion. Thus we believe that the two compounds are identical and contain carbonate and not nitrate.

The Co^{II} compound was obtained from the preparation

(Received, 29th March 1972; Com. 538.)

- ¹ R. Strandberg and B. K. S. Lundberg, Acta Chem. Scand., 1971, 25, 1767.
- ² A. D. Mighell and A. Santoro, Acta Cryst., 1971, B27, 2089.
- ⁸G. Ivarsson, B. K. S. Lundberg, and N. Ingri, Acta Chem. Scand., in the press.

described by Strandberg and Lundberg¹ and also from the reaction of CoCl₂ with imidazole as described for the cadmium analogue. The carbonate ions in these cases can come only from dissolved CO_2 . This means that the solubility products are very low for these compounds.

The intensities from the crystals of $[Cd(C_3H_4N_2)_6]CO_3$, 5H₃O were collected and measured by using an automatic linear diffractometer, PAILRED, and Mo- K_{α} radiation. Correction for Lorentz and polarisation factors was carried out in the usual way,³ and correction for absorption was also made. Least-squares refinements are in progress using anisotropic temperature factors for all atoms. The conventional *R*-value is 0.050; the satisfactory refinement supports the formulation, $[Cd(C_8H_4N_2)_6]CO_3, 5H_3O$. Our aim is to locate the positions of the hydrogen atoms, especially those in the carbonate–water layers, since there are indications that the carbonate ions are hydrated.